Bridging Research and Practice

A review of how advances on human cognition, development, and learning can be incorporated into educational practice of implementing effective science education programs

> Sally Goetz Shuler Executive Director National Science Resources Center

> > **NSRC**

Monterrey, Mexico May 12, 2003

National Science Resources Center

Established in 1985 as an organization of the National Academies and the Smithsonian Institution

National Science Resources Center

Mission

To improve the learning and teaching of science in the nation's 16,000 school districts

Core Principles

- 1. Science for all children
- 2. Products and services are informed by research and incorporate best practices
- 3. Reform strategies focus on systems thinking and leverage change through strategic partnerships

<section-header><section-header><section-header>

Sources

How People Learn and

Bridging Research and Practice

NSR(

National Research Council www.national-academies.org

Learners and Learning

- Development and Learning Competencies
- Transfer of Learning
- Competent and Expert Performance

Scientific understanding of learning includes understanding about

- Learning processes
- Learning environments
- Teaching
- Sociocultural processes

NSRC

Research Areas

- Role of prior knowledge in learning
- Plasticity and related issues of early experience upon brain development
- Learning as an active process

Research Areas

- Learning for understanding
- Adaptive expertise
- Learning as a time-consuming endeavor

Research

- Importance of social and cultural contexts
- Transfer and the conditions for wide application of learning
- Subject matter uniqueness
- Assessment to support learning
- New educational technologies

NSRC

Teachers and Teaching

- Teaching for In-Depth Learning
- Expert Teachers

Learning Environments

- Tools of Technology
- Assessment to Support Learning
- Learning and Connections to Community

2. What are the implications of this research for the design of curriculum, instruction, assessments, and learning environments?

Implications for Learning

Students come to the classroom with preconceptions about how the world works. If their initial understanding is not engaged, they may fail to grasp the new concepts and information that are taught, or they may learn them for the purposes of a test but revert to their preconceptions outside the classroom.

Implications for Learning

 A metacognitive approach to instruction can help students learn to take control of their own learning by defining learning goals and monitoring their progress in achieving them.

Implications for Teaching and Teacher Preparation

• Teachers must draw out and work with preexisting understandings that their students bring with them.

Implications for Teaching and Teacher Preparation

 Teachers must move from superficial coverage of all topics in science with in-depth coverage of a few topics that allows key concepts in that discipline to be understood.

NSRC

Implications for Teaching and Teacher Preparation

 Teachers must come to teaching with the experience of in-depth study of science themselves.

Implications for Teaching and Teacher Preparation

 The teaching of metacognitive skills should be integrated into the science instructional program.

Implications for Assessment

 Formative assessments - ongoing assessments designed to make students' thinking visible to both teachers and students - are essential.

NSR(

Implications for Assessment

 Assessment for purposes of accountability must test deep understanding rather than surface knowledge.

Implications for Learning Environment

 Schools and classrooms must be learner centered.

Implications for Learning Environment

Learning is influenced in fundamental ways by the context in which it takes place. A communitycentered approach requires the development of norms for the classroom and school, as well as connections to the outside world, that support core learning values

incorporated research into its science education programs?

Two examples:

- 1. Curriculum development
- 2. Design of professional development programs for teachers

NSR(

Research

- Children's ideas about different science concepts
- How children learn and learn science at various developmental stages
- Important science concepts in life, earth, and physical sciences and their relationship to students' interest, relevance, and how they can be studies in a way that is developmentally appropriate for students at various ages

Research

- Teachers' backgrounds and needs
- School district needs in terms of cost, equipment and supplies, education goals
- Standards: National and state

Goal:	Development of Scientific Reasoning Skills				
	1	Observing,			
		Measuring, and			
		ld e n tify in g			
		Properties			
	2 – 3	Seeking Evidence			
		Recognizing			
		Patterns and Cycles			
	4 – 5	Identifying Cause and			
		Effect; Extending the			
		Senses			
	6 – 8	Designing and			
		Conducting Controlled			
		Experiments			

NSRC Curriculum Development Center

GRADE LEVEL	LIFEANDEARTH SCIENCES		PHYSICAL SCIENCESAND TECHNOLOGY		
1	Organisms	Weather	Soils and Liquids	Comparing and Measuring	
2	T he Life Cycle of Butterflies	So is	Changes	Balancing and Weighing	
3	Plant Growth and Development	Rocks and Minerals	Chemical Tests	Sound	STC
4	Animal Studies	Land and W ater	Electric Circuits	Motion and Design	Curncu lui
5	Microworlds	Ecosystem s	Food Chemistry	Floating and Sinking	
6	Experiments with Plants	Measuring Time	Magnets and Motors	The Technology of Paper	{
7/8	Human Body Systems	Catastropi c Events	P roperties of Matter	E nergy, Machines, and Motion	STC / MS Curricu Iur
7/8	Investigating	Earth	Light	Electric Orcuits	NODO

NSRCK-8 Science Education Curricul um Programs

Professional Development

Programs that prepare educators to teach inquiry-centered science and that consider professional growth as a long-term process.

Stages of Expertise

Novice

- Lacks familiarity with practiced routines.
- Performs tasks that are context-free.
- Behaves rationally with little flexibility.

Stages of Expertise

Competent

- Has acquired proficient knowledge of factual information about a science discipline and inquiry
- Understands the relationship of factual information to science concepts
- Lacks the additional knowledge required to have a thorough understanding of the relationship of factual information to science concepts

Stages of Expertise

Competent

- Uses instructional strategies that begin to help students develop conceptual understanding of science concepts while developing criticalthinking and problem-solving skills
- Makes conscious choices about what to teach.
- Sets priorities, goals, and plans.
- Delivers reasonable instruction.

Stages of Expertise

Expert

- Has comprehensive knowledge of factual information about a science discipline and inquiry
- Understands the relationship of factual information to science concepts
- Can efficiently use and acquire new information to about important science concepts

Stages of Expertise

Expert

- Consistently uses instructional strategies that are designed to help students develop and assess their understanding of science concepts
- Uses both analytical thought and intuition.
- Shows fluid performance.
- Knows what to do and when to do it.

