Introducing the Materials World Modules in Chihuahua, Mexico

OUTLINE

- Materials Science as a Tendency in Science

- CIMAV: Research and Education
 - The MWM Project
 - The MWM Mexican Project

R. Chang, NWU M. G. Chacón, SEC Chih. S. Maloof, SEC Chih. J. González, CIMAV L. Fuentes, CIMAV

Integration in Science

Stix, Scientific American, April 2005

Discovery of the new analgesic "Ω-conopeptide". Physics? Chemistry? Phisiology?

Materials Science

- Research
- Education

Materials Education?

Interdisciplinary – UNESCO is calling for the "breakdown of traditional disciplinary barriers" to improve science literacy.

The Right Mix – UNESCO calls the "cross-disciplinarity" between Chemistry, Math, and Physics a "global science education priority."

MSE provides an interdisciplinary approach to science and math education.

Key Challenge

Work together to develop instructional materials and methods that stimulate students natural curiosity and get them excited about science and technology.

A Team-based Approach

Secondary School Science, Math, and Technology Teachers

University Scientists & Researchers

University Educational Researchers

Professional Editors, Designers, Graphic Artists, etc.

MWM's Model: Inquiry and Design

 Students complete a series of hands-on, inquiry-based activities

Inquiry cycle

 Each module culminates in design challenges

 Students simulate the work of scientists (through activities that foster inquiry) and engineers (through design) Identify a question. Propose an explanation. Create and perform an experiment to test the hypothesis. Based on results, refine the explanation.

Goal: an explanation

Design cycle

Identify a problem. Propose, build, and test a solution to the problem. Redesign, Based on results, to improve the solution.

Goal: a functional product

Real-World Design Projects

- Biodegradable Materials
- Biosensors
- Ceramics
- Composites
- Concrete
- Food Packaging
- Polymers
- Smart Sensors
- Sports Materials

Medicine-delivery device **Cholesterol, Glucose biosensor** Voltage-protecting device Strong, lightweight fishing pole **Roofing tile, concrete Frisbee** Environmentally friendly chip pkg. Humidity sensor, new polymer product **Coin counter, smart device** Hi-bounce superball, mini golf course

Inventing a New Shoe

Making a Better Basketball Net

MWM Activity Kits

- Starter and refill kits are available for each module
- Kits contain enough materials to do the module once with a class of approximately 24 students
- Kits range in price depending upon the materials they contain

Teacher Professional Development

Pre-service Teachers at Universities

Teacher Workshops

Field Test Participants

Chihuahua MWM Pilot Plan

Create an MSE course for high school students, based on MWM modules.

- Translate content into Spanish
- Adapt content to meet local needs
- Prepare teachers (inquiry and design)
- Field test the course in classrooms
- Improve course design as needed

 SEC - CIMAV joint project agreed
"Composites" module already translated
Prof. Chang's Workshop for 50 high-school teachers' training starts 5/5/05